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Abstract - Responses of the nonlinear resonant medium represented by set 
oscillators are investigated. Solutions of the nonlinear equations of oscillator 
in the form of final Volterra series in the time and frequency domains, 
corresponding to anharmonicity, nonlinear excitation and nonlinear 
attenuation are used.  Due to time-and-frequency dualism nonlinear resonant 
medium allows to organize calculation of integral transformations of the 
convolution type in frequency space with the same connectivity, as 
multiplication in time space. Integral transformation of input signals 
responses’ character is considered. Attention is paid to the duality both to the 
mediums under consideration and to classical nonlinear circuits.° 
 
Keywrords: oscillator, resonant medium, nonlinearity, Volterra series, 
nonlinear circuit, dualism. 

1 INTRODUCTION 

Due to the time-frequency dualism nonlinear resonant 
(NRM) medium makes possible to calculate integral 
transformations of the convolution type in frequency space 
with the same connectivity as multiplication in time space.  

In this case nonlinear effects will lead not to frequency 
mixing resulting in generation of oscillations with 
combinational frequencies, but to time mixing, i.e. to 
generation of signals (pulses) at combinational instants of time 
[1], [2]. This time-frequency dualism phenomenon is 
illustrated by fig. 1. 

 
Fig. 1. Responses of nonlinear systems to multisignal 
excitation: above – responses of the nonlinear circuit to 
a series of harmonic excitations, below – responses of 
the nonlinear resonant medium to the excitation in the 
form of delta functions. 

 
The time positions of responses are as rigidly connected to 

the time position of excitation pulses in nonlinear frequency 
space as combinational frequencies arising in a nonlinear 
circuit are connected to the excitation frequencies. Let us 
define the resonant medium as a set of high-Q oscillators, 
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resonating in a frequency band. Such representation depicts 
the medium’s local heterogeneity. 

The term "oscillator" here covers concepts such as 
separate micro particles or medium collective excitations – 
quasi-particles – under quantum-mechanical consideration, as 
well as molecules or even the macroscopical particles carrying 
all properties of the substance - in the classical approach. In 
such a model the nonlinear properties of the medium can be 
provided both by the interaction of external excitation with a 
separate oscillator, and by the interaction between separate 
excited oscillators and thus reduced to the following types 

 Anharmonicity; 
 Nonlinear excitation; 
 Nonlinear attenuation; 
 Nonlinear interaction between oscillators 

Solving one-partial problem is sufficient for the first three 
kinds of nonlinearity. In the latter case, it is required to resolve 
a problem of many particles for the description of the model. 
The medium’s response to the external excitation will be 
calculated by summing the responses of separate oscillators 
regarding with respect to their frequency distribution density 
g(ω). It is appropriate to mention here that the resonant 
medium represented by a set of oscillators is a real frequency 
space and it is convenient to describe it in terms of frequency 
representation. Similar problems were observed in works [4]-
[6]. 

2 PROBLEM FORMULATION  

The response of such nonlinear resonant medium - echo-
signal – is a result of in-phase summation of oscillations of the 
excited oscillators, therefore the term «phased echo» is 
frequently used for this signal definition Specific physical and 
mathematical models distinguished by both the big variety, 
and significant complexity are used in various type echo 
researches. In the applications, the theory of a spin echo [3] is 
discussed at length, yet the analysis is limited to small-signal 
approximation. The statistical analysis of the known various 
medium echo phenomenon physical and mathematical models, 
not limited by the small-signal approximation frameworks, 
represents significant mathematical difficulties. The volume of 
such calculations even more increases due to the big variety of 
concrete physical mechanisms of echo – signals formation. 

The purpose of this publication is to elaborate a unified 
description of the echo phenomenon regardless of the concrete 
physical mechanism of its formation, suitable for the echo-
processors work analysis in the structure of various radio 
engineering systems effected by signals and interference of 
any intensity. The mechanisms of nonlinearity mentioned 
above have peculiarities related to the amplitude behavior of 
responses and the responses phase - exciting pulses phase 
dependence. The dependence of responses shape on the shape 
of excitation pulses is the same for all types of nonlinearity. 
Phase characteristics are defined by the kind of nonlinearity.  
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3 PROBLEM SOLUTION  

3.1 NRM MODEL WITH ANHARMONIC OSCILLATORS 
Let us present the equation of the  i-th anharmonic oscillator 
as follows 
Di yi(t)  +  Fi [yi(t)] = x(t),  (1) 

where x(t) - external excitation, 
2

2
02 2i i i

d dD
dt dt

σ ω= + +  - 

linear operator, σi and ω0i -  loss characteristic and resonant 
frequency of linear approximation, correspondingly, yi(t) – 

response of the  i-th oscillator, ( ) ( )
2

p
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k
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=

  =  ∑  is a 

polynomial of the p-th degree, ak - constants including power 
constants and geometrical values. 
To solve (1) let us pass to the equivalent integral relation: 

Let us denote weight (pulse) function of a linear equation  
Dyi = x by h: 
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Let us multiply (1) by h and integrate over t  
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taking into account (3) we have  
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Let us accept  function yi(t) as a  first approximation of the 
solution 
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Let us define other approximations by a recurrence formula 
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Applying (7) we  get  a series containing functionals of the 
following  kind 
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 (8) 
which are the homogeneous Volterra functionals of the n-th 
degree 
As all the oscillators are equivalent let us omit  
i-oscillator belonging index hereinafter to make the record 
shorter.  In the end of calculations it is necessary to find the 
sum of all oscillators responses, which will be substituted by 
integration with the form of absorption line g(ω). In this 
notation (8) will be rewritten in the following way 
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 (9) 
Function hn (t, t1, …, tn) is called a functional kernel Vn. 
The solution of (2) will be found by the iterative method that 
results in the representation of  y (t) in the form of  Volterra 
finite series in case of weak nonlinearity (ak <<1, k = 2, 3, …, 
N): 
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where Ep - p-dimensional Euclidean space, in which Volterra 
kernels hp (τ1, τ2, …, τp), representing pulse functions of 
nonlinear transformation of the p-th order are determined. So, 
for example, 
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3.2 NRM MODEL WITH NONLINEAR ATTENUATION 
It is possible to write the equation of an oscillator with 
nonlinear attenuation in the form 
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where nonlinear function σ (y) is represented by a polynomial  
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We rewrite (11) in the operational form  
Dy + F(y) = x, 
where 
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corresponding this equation relation takes the form (5). 
After plain transformations we write the second approximation 
of the solution as 
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the accent stands for a derivative. 
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3.3 NRM MODEL WITH NONLINEAR EXCITATION 
The elementary mechanism of echo occurrence in such 
medium is linked to presence of cubic nonlinearity in the 
function describing the process of excitation of the oscillators 
system  [1]. If an oscillator is excited by two δ-functions 
operating at  
t = t1 and t = t2 time moments with amplitudes А1 and А2, 
respectively, the response of a separate oscillator in this case 
can be written in the form of 
y(t,ω)= [A1cosω(t - t1) + A2cjsω(t – t2)]3 
Having raised the sum to the third power we leave only one 
term describing the response at t =2t1-t2: 
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4

y t A A t t tω ω= +  − −    

Having summed the responses of all oscillators we have 
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that represents δ-function at  t = 2t2 - t1 moment of time and 
corresponds to a two-impulse echo.  

A separable Volterra kernel submits to similar 
transformation: 
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Volterra functional of the n-th order with such kernel can 
be written in the following simple form 
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3.4 Spectral representation of NRM 
Let us consider reaction of a nonlinear circuit to the sum 

of signals with arbitrary spectral densities and compare it with 
reaction of NRM, expressed in the terms of input action 
spectrum S (jω) and multivariate Fourier-transform Kn(ω1,   
,ωn) of Volterra kernels hn(τ1,…,τn) [7]. 

Functions Kn(ω1,   ,ωn) are n-dimensional NRM gains. 
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Then the time form of NMR reaction can be presented as 
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The response y(t) all oscillators system on a signal x(t) we 
shall write down in the reduced form of the record found in[2]. 
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where p – number of “plus” signs in the gain arguments, ai – 
power constants, function g(ω) has the meaning of the 
oscillator frequency distribution density. 
The minimal order of nonlinearity in the equation (1) 
providing echo phenomena equals to three. This is the cubic 
medium and it can be represented by the radio engineering 
equivalent shown in Fig. 2.  

 
 

Fig. 2. Simplified equivalent of the cubic medium. 
 

The first term of expression (13) describes  linear  
transmission  of  the  signal x(t)  through the filter with the 
gain g (jω); the second one corresponds to the nonlinear 
transformation of the third order and rather adequately 
characterizes the processes occurring in the nonlinear resonant 
medium: 
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The spectral density of the output signal corresponding to 
this transformation 
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defines possible responses of medium. 
We find NRM response to excitation in the framework of 

the second approximation in the form of sum of arbitrary form 
signals [2]: 
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where Si (jω) - spectrum of the  i-th signal, t1i - its time shift 
relative to the first signal which time position (in a general 
sense) is given to be a zero time: t1i = 0. … 
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where only the terms, satisfying the principle of causality 
remain. 

We present a nonlinear circuit as a inercialless nonlinear 
converter (NNC) connected in series with a linear filter 
selecting some (first) spectral band (fig. 3). 
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Characteristic of a NNC exited by the input signal 
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To avoid excessively intricate calculation we limit 

ourselves to the analysis of a polynomial of the third degree, 
letting N = 3 in (18). Then 
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The oscillation spectrum y (t) can be written in the 
following form: 
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where ( ) ( ) ( ) ( )i j i jS x S x S S x dξ ξ ξ∗ = −∫ . 

The third term’s structure coincides (19) with the structure 
of expression (17) to the insignificant constant factors 
provided that operations of convolution were substituted for 
operations of multiplication in (17) 

The distinction is complex conjugation of one of any 
product factors in the expression (51 indicating substitution of 
correlation for convolution of time functions. But this 
circumstance is absolutely insignificant for NC description as 
spectra of signals in these circuits’ clusters about frequencies 

+ωi and-ωi. 
Let signals xi (t) further be narrow-band in radio 

engineering sense and allowed to be presented in the form of  

xi (t) = Ai (t) cos[ωit + ϕi (t)], where Ai (t) and ϕi(t) - slowly 
varying envelope and a phase. Then, considering band 
limitedness of signals in (19), we get for positive frequencies: 
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Here Sijk(ω - ωl) - convolution of spectra envelopes Ai(t), 
Aj(t), Ak(t), transferred to frequency ωl. The result of three 
signals S1 + S2 + S3 sum transformation in a nonlinear circuit 
of the third order is presented in Fig.4,a.  Fig. 4,b displays the 
response of the cubic medium to the sum of three signals 
having the same  form-time dependence as the spectral 
functions in fig. 4,a. 

 
 

Fig. 4. Responses a) of a nonlinear circuit and b) NRM to the sum 
of three signals of the arbitrary form. 

As the third signal δ-functions: S3 =δ (ω - w3) in fig.4,a  
and S3 = δ (t - t3) in fig. 4,b are used. For clearness only basic 
responses of nonlinear systems, i.e. responses of two-pulse 
type S12, S23 and S13, and responses of three-impulse type S123, 
S113 and S223 are shown in the figure. 

Positions of the responses on the ω or t- axes are 
bilaterally symmetric with reference to the axes of symmetry 
passing through the second signals. 

Responses on the frequency axis correspond to 
convolutions of the third signal spectrum with auto 
convolutions of the first and second signals spectra, and on a 
time base - to convolution of the third signal with auto 
correlative functions of the first and second signals 
correspondingly. 

It is easy to see, that according to a principle of causality 
no signals drawn in fig. 4,b by hatch line can arise in NRM. 
This is the unique and quite natural difference in responses of 
NC and NRM. It is also necessary to note, that there are no 
differences like these in the mathematical aspect: substitution 

S1 S2 S12 S123 S3 S123 S23 S13 

S223 S113 

a) 

b) 

ω2 2ω2 ω3-ω2 ω3+ω2 2ω3-ω2 2ω3 
0 

t2 2t2 t3-t2 t3+t2 0 

ω 

t 

ω3 

t3 2t3-t2 2t3 

NNC Ф(ω) x(t) y(t) z(t) 

Fig. 3. Representation of a nonlinear circuit 
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(3) in (2) results in the expression similar to (6) provided that  
b1 = b2 =0. 

 
Having analyzed the origin of the responses presented in 

Fig.3 we can note the following 
1. NC response having the spectrum S123 (ω), results 

from the product of S1(t) S2 (t) and heterodyning with 
frequency ω3. Filter  
Φ(ω) fig. 3 plays the role of integrator, NNC and the 
band filter connected in series can be considered as 
heterodyne correlator. 

2. In NRM echo-signals are generated at nonlinearity of 
the order not lower than three unlike nonlinear 
circuits where responses of SI (t) S2 (t) type can occur 
already at square-law nonlinearity 

 
So there are no responses of the S1 (ω) S2 (ω) type in 

NRM. NRM with nonlinearity of the third order is usually 
called cubic. In such mediums responses of the 

( ) ( )2
1 2S Sω ω∗  type exited by the interaction of two signals 

( ) ( ) ( )1 2 2S t S t S t⊗ ∗   in time domain) can appear as well as 

responses of the ( ) ( ) ( )*
1 2 3S S Sω ω ω  type resulted from the 

interaction of three signals ( ) ( ) ( )1 2 3S t S t S t⊗ ∗   in time 
domain). 

 
The last response at S3 (t) = δ (t - t3) can be considered as 

cross-correlation function (CCF) 
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subjected to "heterodyning" with time  t3, i.e. to the time delay 
equaled to  t3 - (t2 - t1) = t3 - t2. 
 

In fig. 3 filter Φ(ω) operates as frequency selection, 
separating useful result of correlation of signals S1(t) and S2(t) 
from other responses. 

 
CCF of signals S1(t) and S2(t) in NRM can be selected from 

other responses by means of time strobing. All common 
properties of NC and NRM responses mentioned above are 
consequence of the time-frequency symmetry, or dualism [8] 
which can be illustrated by the following table: 

 
 

Table 1 
№ Operation Dual operation 

1 
2 
3 
 
4 
 

Product 
Band trapping 
Frequency 
transformation 
Weight processing 
in the frequency 
domain 

Convolution 
Time trapping 
Time delay 
 
Weight processing 
in the time domain 

Thus, it is shown, that NC and NRM are dual systems.  
If responses of one system to an input signal are known, 

responses of the other system can be received, making ω ↔ t 
replacement or replacing operations of multiplication by 
operation of convolution with simultaneous complex 
conjugation of the first factor. 

Table 2 illustrates the rule of NRM response record at 
known NC responses. 

Table 2 
Nonlinear 

circuit 

Nonlinear resonant medium Re-
mark 

( ) ( )
( ) ( )

123 1

2 3

S S

S S

ω ω

ω ω

= ∗

∗
 

( ) ( )
( ) ( )

123 1

2 3

S t S t

S t S t

= ⋅

⋅
 

( ) ( ) ( ) ( )*
123 1 2 3S S S Sω ω ω ω=

( ) ( ) ( ) ( )*
123 1 2 3S t S t S t S t= ∗ ∗

 
( ) ( ) ( ) ( )*

123 1 2 3S t S t S t S t= ∗ ∗

( ) ( ) ( ) ( )*
123 1 2 3S S S Sω ω ω ω=

 

1 
 
2 
 
3 
 
4 

In this table: 
1 – Operation change;    2 – Argument change 
3 – Operation change;    4 – Argument change 

4 Conclusion 
Thus, it is shown, that nonlinear circuits of the arbitrary 

order are dual to nonlinear resonant media of the third order 
and higher. This property NRM can be used in devices of 
signals processing for operations of integral transformations. It 
is especially perspective for the devices using a photon echo 
phenomenon (photon echo-processors). Photon processors 
have very high speed and work with bidimentional signals. 

Author thanks mrs M. Potapova for translation into 
English. 
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